Déduction Naturelle: quantificateurs, copie et égalité

Stéphane Devismes Pascal Lafourcade Michel Lévy

Université Grenoble Alpes

19 Mars 2010

Cas Propositionnel

Il y a des algorithmes pour décider si une formule est valide ou non valide.

Cas Propositionnel

Il y a des algorithmes pour décider si une formule est valide ou non valide.

Cas Premier Ordre (FO: First Order)

Il n'y a aucun algorithme pour décider si une formule est valide ou non valide.

Cas Propositionnel

Il y a des algorithmes pour décider si une formule est valide ou non valide.

Cas Premier Ordre (FO: First Order)

Il n'y a aucun algorithme pour décider si une formule est valide ou non valide.

En admettant l'équivalence entre prouvable (sans environnement) et valide, il n'y a pas d'algorithme qui, étant donné une formule, puisse nous en construire la preuve, ou nous avertir que cette formule n'a pas de preuve. (Church 1936 et Turing 1937)

Plan

Introduction

Règles

Exemples

Règle de la copie

Les règles de l'égalité

Tactiques de preuves

Conclusion

Plan

Introduction

Règles

Exemples

Règle de la copie

Les règles de l'égalité

Tactiques de preuves

Conclusion

Rappel: Règles « propositionnelle »

Table 3.1

Élimination			
<u>A A⇒B</u> B	<i>⇒ E</i>		
$\frac{A \wedge B}{A \wedge B}$	∧ <i>E</i> 1		
$\frac{A \wedge B}{B}$	∧ <i>E</i> 2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	∨E		
Règle du faux			
$\frac{\perp}{A}$ Efq			
Règle à l'absurde			
$\frac{\neg \neg A}{A}$ RAA			
	$ \frac{A A \Rightarrow B}{B} $ $ \frac{A \land B}{A \land B} $ $ \frac{A \land B}{B} $ $ \frac{A \land B}{B} $ $ \frac{A \lor B A \Rightarrow C B \Rightarrow C}{C} $ egle du faux $ \frac{\bot}{A} E^{fq} $ le à l'absurde		

[A] signifie que A est une hypothèse

Extension de la déduction naturelle propositionnelle

Définitions de brouillon de preuve, environnement, contexte, formule utilisable restent inchangées!

Extension de la déduction naturelle propositionnelle

- Définitions de brouillon de preuve, environnement, contexte, formule utilisable restent inchangées!
- ► Une seule règle pour enlever des hypothèses : ⇒ I.

Extension de la déduction naturelle propositionnelle

- Définitions de brouillon de preuve, environnement, contexte, formule utilisable restent inchangées!
- ► Une seule règle pour enlever des hypothèses : ⇒ I.

Règles en plus par rapport à DN « propositionnelle ».

- les quantificateurs
- la copie
- l'égalité

Cohérence et complétude

Cohérence et complétude

► Cohérence des règles de notre système.

$$(\Gamma \vdash A)$$
 implique $\Gamma \models A$).

Cohérence et complétude

- Cohérence des règles de notre système.
 - $(\Gamma \vdash A)$ implique $\Gamma \models A$).
- ► Complétude admise sans preuve. ($\Gamma \models A$ implique $\Gamma \vdash A$) Preuves similaires dans :
 - Peter B. Andrews. An introduction to mathematical logic: to truth through proof. Academic Press, 1986.
 - Herbert B. Enderton. A mathematical Introduction to Logic. Academic Press, 2001.

Plan

Introduction

Règles

Exemples

Règle de la copie

Les règles de l'égalité

Tactiques de preuves

Conclusion

Rappel

Définition 4.3.34

Soit *x* une variable, *t* un terme et *A* une formule.

- 1. A < x := t > est la formule obtenue en remplaçant dans la formule A toute occurrence libre de x par le terme t.
- 2. Le terme *t* est libre pour *x* dans *A* si les variables de *t* ne sont pas liées dans les occurrences libres de *x*.

Exercice

Dans

$$A = \forall y P(x, y)$$

► *x* est-il libre pour *y* dans *A*?

Exercice

Dans

$$A = \forall y P(x, y)$$

► *x* est-il libre pour *y* dans *A*?

oui

 \triangleright y est-il libre pour x dans A?

Exercice

Dans

$$A = \forall y P(x, y)$$

► x est-il libre pour y dans A?

oui

▶ *y* est-il libre pour *x* dans *A*?

non

Règles des quantificateurs : $\forall E$

A et B sont des formules, x est une variable, t est un terme

Elimination ∀

$$\frac{\forall xA}{A < x := t >} \forall E$$

t est libre pour x dans A

Règles des quantificateurs : $\exists E$

A et B sont des formules, x est une variable.

Elimination ∃

$$\frac{\exists xA \qquad (A \Rightarrow B)}{B} \exists E$$

x ne doit être libre

- ▶ ni dans l'environnement,
- ni dans B,
- ni dans le contexte de la prémisse droite de la règle.

Règles des quantificateurs : \forall I

A et B sont des formules, x est une variable.

Introduction ∀

$$\frac{A}{\forall xA} \forall I$$

x ne doit être libre

- ▶ ni dans l'environnement de la preuve,
- ▶ ni dans le contexte de la prémisse de la règle

Règles des quantificateurs : ∃I

A et B sont des formules, x est une variable, t est un terme

Introduction ∃

$$\frac{A < x := t >}{\exists x A} \exists I$$

t est libre pour x dans A

Récapitulatif des règles des quantificateurs : Tableau 6.1

$\frac{A}{\forall xA}$	∀1	 x ne doit être libre ni dans l'environnement de la preuve, ni dans le contexte de la prémisse de la règle.
$\forall x A$	\	
$\overline{A < x := t >}$	∀ <i>E</i>	t est libre pour x dans A .
$\frac{A < x := t >}{\exists x A}$	∃/	t est libre pour x dans A.
$\exists xA \qquad (A \Rightarrow B)$	∃ <i>E</i>	x ne doit être libre
		ni dans l'environnement,
		▶ ni dans <i>B</i> ,
		ni dans le contexte de la prémisse droite de la règle.

A et B sont des formules, x est une variable, t est un terme

Plan

Introduction

Règles

Exemples

Règle de la copie

Les règles de l'égalité

Tactiques de preuves

Conclusion

Introduction

Comment utiliser ces règles sur des exemples,

Ainsi que les erreurs occasionnées par le non respect des conditions d'emploi des règles.

1 1 Supposons $\forall y P(y) \land \forall y Q(y)$

Exemple 6.1.2
$$\forall y P(y) \land \forall y Q(y) \Rightarrow \forall x (P(x) \land Q(x))$$

```
1 1 Supposons \forall y P(y) \land \forall y Q(y)
1 2 \forall y P(y) \land E1 1
```

```
1 1 Supposons \forall y P(y) \land \forall y Q(y)
1 2 \forall y P(y) \land E1 1
1 3 \forall y Q(y) \land E2 1
```

```
1 1 Supposons \forall y P(y) \land \forall y Q(y)

1 2 \forall y P(y) \land E1 1

1 3 \forall y Q(y) \land E2 1

1 4 P(x) \forall E 2, x

1 5 Q(x) \forall E 3, x
```

```
1 1 Supposons \forall y P(y) \land \forall y Q(y)

1 2 \forall y P(y) \land E1 1

1 3 \forall y Q(y) \land E2 1

1 4 P(x) \forall E 2, x

1 5 Q(x) \forall E 3, x

1 6 P(x) \land Q(x) \land I 4, 5
```

```
      1
      1
      Supposons \forall y P(y) \land \forall y Q(y)

      1
      2
      \forall y P(y)
      \land E1 \ 1

      1
      3
      \forall y Q(y)
      \land E2 \ 1

      1
      4
      P(x)
      \forall E \ 2, x

      1
      5
      Q(x)
      \forall E \ 3, x

      1
      6
      P(x) \land Q(x)
      \land I \ 4, 5

      1
      7
      \forall x (P(x) \land Q(x))
      \forall I \ 6
```

```
      1
      1
      Supposons \forall y P(y) \land \forall y Q(y)

      1
      2
      \forall y P(y)
      \land E1 \ 1

      1
      3
      \forall y Q(y)
      \land E2 \ 1

      1
      4
      P(x)
      \forall E \ 2, x

      1
      5
      Q(x)
      \forall E \ 3, x

      1
      6
      P(x) \land Q(x)
      \land I4, 5

      1
      7
      \forall x (P(x) \land Q(x))
      \forall I6

      8
      Donc \forall y P(y) \land \forall y Q(y) \Rightarrow \forall x (P(x) \land Q(x))
      \Rightarrow I1, 7
```

Exemple 6.1.1

Usage incorrect de la règle $\forall E$: où est l'erreur?

```
1 1 Supposons \forall x \exists y P(x, y)
```

1 2
$$\exists y P(y,y)$$
 $\forall E 1, y$

3 Donc
$$\forall x \exists y P(x,y) \Rightarrow \exists y P(y,y) \Rightarrow I 1,2$$

Exemple 6.1.1

Usage incorrect de la règle $\forall E$: où est l'erreur?

1 1 Supposons $\forall x \exists y P(x,y)$ 1 2 $\exists y P(y,y)$ 2 $\exists y P(y,y)$ $\forall E \ 1, y$ 3 $\mathsf{Donc} \ \forall x \exists y P(x,y) \Rightarrow \exists y P(y,y) \Rightarrow I \ 1,2$ $\forall E$ 1, y ERREUR

À la ligne 2, on a pas respecté les conditions d'applications de la règle $\forall E$ car le terme y n'est pas libre pour x dans la formule $\exists y P(x, y)$.

Usage incorrect de la règle $\forall E$: où est l'erreur?

```
1 1 Supposons \forall x \exists y P(x,y)
1 2 \exists y P(y,y)
```

1 2
$$\exists y P(y,y)$$
 $\forall E$ 1, y ERREUR

3 Donc
$$\forall x \exists y P(x,y) \Rightarrow \exists y P(y,y) \Rightarrow I 1,2$$

À la ligne 2, on a pas respecté les conditions d'applications de la règle $\forall E$ car le terme y n'est pas libre pour x dans la formule $\exists y P(x, y)$.

Soit / l'interprétation de domaine $\{0,1\}$ avec $P_I = \{(0,1),(1,0)\}$. Cette interprétation rend fausse la « conclusion ».

Usage incorrect de la règle $\forall I$

```
1 1 Supposons P(x)
```

1 2
$$\forall x P(x)$$
 $\forall I 1$
3 Donc $P(x) \Rightarrow \forall x P(x) \Rightarrow I 1, 2$

3 Donc
$$P(x) \Rightarrow \forall x P(x) \Rightarrow I 1, 2$$

Usage incorrect de la règle $\forall I$

- 1 1 Supposons P(x)1 2 $\forall x P(x)$
- ∀I 1 ERREUR
 - 3 Donc $P(x) \Rightarrow \forall x P(x) \Rightarrow I 1, 2$

À la ligne 2, on n'a pas respecté les conditions d'applications de la règle $\forall I$ car la prémisse P(x) est établie dans le contexte P(x), ce qui interdit de généraliser sur x.

Usage incorrect de la règle $\forall I$

```
1 1 Supposons P(x)
1 2 \forall x P(x)
```

∀I 1 ERREUR

3 Donc
$$P(x) \Rightarrow \forall x P(x) \Rightarrow I 1, 2$$

À la ligne 2, on n'a pas respecté les conditions d'applications de la règle $\forall I$ car la prémisse P(x) est établie dans le contexte P(x), ce qui interdit de généraliser sur x.

Soit I l'interprétation de domaine $\{0,1\}$ avec $P_I = \{0\}$. Soit *e* un état où x = 0. L'assignation (I, e) rend fausse la « conclusion ».

Usage incorrect de la règle $\exists E$

```
1 1 Supposons \exists xP(x)

1, 2 2 Supposons P(x)

1 3 Donc P(x) \Rightarrow P(x) \Rightarrow I 2, 2

1 4 P(x) \exists E 1, 3

1 5 \forall xP(x) \forall I 4

6 Donc \exists xP(x) \Rightarrow \forall xP(x) \Rightarrow I 1,5
```

Usage incorrect de la règle $\exists E$

```
1 1 Supposons \exists xP(x)

1, 2 2 Supposons P(x)

1 3 Donc P(x) \Rightarrow P(x) \Rightarrow I 2, 2

1 4 P(x) \exists E 1, 3 \text{ ERREUR}

1 5 \forall xP(x) \forall I 4

6 Donc \exists xP(x) \Rightarrow \forall xP(x) \Rightarrow I 1,5
```

La conclusion de la règle $\exists E$ est P(x), contrairement à la condition d'application de cette règle qui impose que la conclusion ne doit pas dépendre de x.

Usage incorrect de la règle $\exists E$

```
1 1 Supposons \exists xP(x)

1, 2 2 Supposons P(x)

1 3 Donc P(x) \Rightarrow P(x) \Rightarrow I 2, 2

1 4 P(x) \exists E 1, 3 \text{ ERREUR}

1 5 \forall xP(x) \forall I 4

6 Donc \exists xP(x) \Rightarrow \forall xP(x) \Rightarrow I 1,5
```

La conclusion de la règle $\exists E$ est P(x), contrairement à la condition d'application de cette règle qui impose que la conclusion ne doit pas dépendre de x.

Soit I l'interprétation de domaine $\{0,1\}$ avec $P_I = \{0\}$. I rend fausse la « conclusion ».

Usage incorrect de la règle $\exists E$

Usage incorrect de la règle $\exists E$

```
1 Supposons \exists x P(x) \land (P(x) \Rightarrow \forall y Q(y))
1 2 \exists x P(x)
                                                                                                     ∧F1 1

\begin{array}{ccc}
1 & 3 & P(x) \Rightarrow \forall y Q(y) \\
1 & 4 & \forall y Q(y)
\end{array}

                                                                                                     ∧ F2 1
                                                                                                     ∃E 2, 3 ERREUR
        5 Donc \exists x P(x) \land (P(x) \Rightarrow \forall y Q(y)) \Rightarrow \forall y Q(y) \Rightarrow 11.4
```

On n'a pas respecté la condition que le contexte de la prémisse $P(x) \Rightarrow \forall y Q(y)$ ne doit pas dépendre de x.

Usage incorrect de la règle $\exists E$

```
1 1 Supposons \exists xP(x) \land (P(x) \Rightarrow \forall yQ(y))

1 2 \exists xP(x) \land E1 1

1 3 P(x) \Rightarrow \forall yQ(y) \land E2 1

1 4 \forall yQ(y) \exists E 2, 3 ERREUR

5 Donc \exists xP(x) \land (P(x) \Rightarrow \forall yQ(y)) \Rightarrow \forall yQ(y) \Rightarrow I 1,4
```

On n'a pas respecté la condition que le contexte de la prémisse $P(x) \Rightarrow \forall y Q(y)$ ne doit pas dépendre de x.

Soit / l'interprétation de domaine $\{0,1\}$ avec $P_l = Q_l = \{0\}$ et l'état e où x = 1. L'assignation (l,e) rend faux cette « conclusion ».

1 1 Supposons $\neg \forall xA$

1 1 Supposons $\neg \forall xA$ 1, 2 2 Supposons $\neg \exists x \neg A$

```
1 1 Supposons \neg \forall xA
1, 2 2 Supposons \neg \exists x \neg A
1, 2, 3 3 Supposons \neg A
```

```
1 1 Supposons \neg \forall xA

1, 2 2 Supposons \neg \exists x \neg A

1, 2, 3 3 Supposons \neg A

1, 2, 3 4 \exists x \neg A \exists I 3, x
```

```
Supposons \neg \forall xA
1, 2 2 Supposons \neg \exists x \neg A
1, 2, 3 Supposons \neg A
1, 2, 3 4 \exists x \neg A
                                          ∃I 3, x
1. 2. 3 5 \perp
                                          \Rightarrow E 2.4
```

```
Supposons \neg \forall xA
1, 2 2 Supposons \neg \exists x \neg A
1, 2, 3 Supposons \neg A
1, 2, 3 4 \exists x \neg A
                                   ∃I 3, x
1, 2, 3 5 \perp
                                   \Rightarrow E 2, 4
1. 2 6 Donc ¬¬A
                                   \Rightarrow 13.5
```

```
Supposons \neg \forall xA
1, 2 2 Supposons \neg \exists x \neg A
1, 2, 3 Supposons \neg A
1, 2, 3 4 \exists x \neg A
                                      ∃I 3, x
1, 2, 3 5 \perp
                                    \Rightarrow E 2, 4
1, 2 6 Donc \neg \neg A \Rightarrow I 3, 5
1.2 7
                                      RAA 6
```

```
Supposons \neg \forall xA
1, 2 2 Supposons \neg \exists x \neg A
1, 2, 3 3 Supposons \neg A
1, 2, 3 4 \exists x \neg A
                                      ∃I 3, x
1, 2, 3 5 \perp
                                      \Rightarrow E 2, 4
1, 2 6 Donc \neg \neg A \Rightarrow 13.5
1, 2 7 A
                                      RAA 6
1. 2
              \forall xA
                                      ∀17
```

```
Supposons \neg \forall xA
1, 2 2 Supposons \neg \exists x \neg A
1, 2, 3 Supposons \neg A
1, 2, 3 4 \exists x \neg A
                                     ∃I 3, x
1, 2, 3 5 \perp
                                    \Rightarrow E 2, 4
1, 2 6 Donc \neg \neg A \Rightarrow 13, 5
1, 2 7 A
                                     RAA 6
1. 2 8 ∀xA
                                     ∀17
1, 2
                                     \Rightarrow E 1.8
```

```
Supposons \neg \forall xA
1, 2 2 Supposons \neg \exists x \neg A
1, 2, 3 Supposons \neg A
1, 2, 3 4 \exists x \neg A
                                        ∃I 3, x
1, 2, 3 5 \perp
                                        \Rightarrow E 2.4
                                        \Rightarrow 13.5
1. 2 6 Donc \neg \neg A
1,2 7 A
                                        RAA 6
1, 2 8 ∀xA
                                        ∀17
1, 2
                                        \Rightarrow E 1.8
                Donc \neg\neg\exists x\neg A
          10
                                        \Rightarrow 12.9
```

```
Supposons \neg \forall xA
1, 2 2 Supposons \neg \exists x \neg A
1, 2, 3 Supposons \neg A
1, 2, 3 4 \exists x \neg A
                                         ∃I 3, x
1, 2, 3 5 \perp
                                         \Rightarrow E 2.4
                                         \Rightarrow 13.5
1. 2 6 Donc \neg \neg A
1,2 7 A
                                         RAA 6
1. 2
          8 ∀xA
                                         ∀17
1, 2
                                         \Rightarrow E 1, 8
              Donc \neg\neg\exists x\neg A
          10
                                         \Rightarrow 12.9
          11
               \exists x \neg A
                                         RAA 10
```

```
Supposons \neg \forall xA
1, 2 2
                 Supposons \neg \exists x \neg A
1, 2, 3 Supposons \neg A
1, 2, 3 4 \exists x \neg A
                                              ∃I 3, x
1, 2, 3
          5 <u></u>
                                              \Rightarrow E 2, 4
                                             \Rightarrow 13.5
1. 2
           6 Donc \neg \neg A
1, 2
                 Α
                                              RAA 6
1. 2 8 ∀xA
                                              ∀17
           9
1, 2
                                              \Rightarrow E 1, 8
           10 Donc \neg\neg\exists x\neg A
                                             \Rightarrow 12.9
           11 \exists x \neg A
                                              RAA 10
           12
                 Donc \neg \forall xA \Rightarrow \exists x \neg A \Rightarrow 11, 11
```

Plan

Introduction

Règles

Exemples

Règle de la copie

Les règles de l'égalité

Tactiques de preuves

Conclusion

Définition

La règle de copie consiste à déduire d'une formule, une autre formule égale au changement près des variables liées.

$$\frac{A'}{A}$$
 copie

Rappel : Deux formules sont égales à un changement près de variables liées si on peut obtenir l'une à partir de l'autre par des remplacements de sous-formules, de la forme QxA par QyA < x := y > où Q est un quantificateur et y est une variable qui ne figure pas dans QxA.

Les règles de l'égalité

Plan

Introduction

Règles

Exemples

Règle de la copie

Les règles de l'égalité

Tactiques de preuves

Conclusion

Réflexivité et Congruence

Deux règles caractérisent l'égalité :

- ▶ un terme est égal à lui-même
- ▶ si deux termes sont égaux, on peut les remplacer l'un par l'autre.

Réflexivité et Congruence

Deux règles caractérisent l'égalité :

- ▶ un terme est égal à lui-même
- ▶ si deux termes sont égaux, on peut les remplacer l'un par l'autre.

$\overline{t=t}$	réflexivité	t est un terme
$\frac{s=t}{A < x := s >}$ $A < x := t >$	congruence	s et t sont deux termes libres pour la variable x dans la formule A

Prouvons que $s=t\Rightarrow t=s$ (symétrie)			
ı			

Prouvons que
$$s = t \Rightarrow t = s$$
 (symétrie)

1 1 Supposons s = t

Prouvons que $s = t \Rightarrow t = s$ (symétrie)

```
1 1 Supposons s = t
```

1 2 s = s réflexivité

Prouvons que $s = t \Rightarrow t = s$ (symétrie)

```
1 1 Supposons s=t

1 2 s=s réflexivité

1 3 t=s congruence 1, 2 (s=s)=(x=s) < x := s > (t=s)=(x=s) < x := t >
```

Prouvons que $s = t \Rightarrow t = s$ (symétrie)

```
1 1 Supposons s=t

1 2 s=s réflexivité

1 3 t=s congruence 1, 2 (s=s)=(x=s) < x := s > (t=s)=(x=s) < x := t > 4 Donc s=t\Rightarrow t=s \Rightarrow I 1, 3
```

Prouvons que $s = t \Rightarrow t = s$ (symétrie)

```
1 1 Supposons s=t

1 2 s=s réflexivité

1 3 t=s congruence 1, 2 (s=s)=(x=s) < x:=s > (t=s)=(x=s) < x:=t > 4 Donc s=t\Rightarrow t=s \Rightarrow I 1, 3
```

Remarque : Notons que la variable x ne figure pas dans la preuve, elle ne fait que marquer l'endroit où fait le remplacement de s par t. Dans les prochains exemples, on se contentera de souligner cet endroit.

Prouvons que
$$s=t \land t=u \Rightarrow s=u$$
 (transitivité)

Prouvons que
$$s = t \land t = u \Rightarrow s = u$$
 (transitivité)

1 1 Supposons
$$s = t \land t = u$$

1 1 Supposons
$$s = t \land t = u$$

1 2 $s = t$ $\land E1 1$

```
1 1 Supposons s = t \land t = u
```

1 2
$$s = t$$
 $\wedge E11$

1 3
$$t=u$$
 $\wedge E2$ 1

Plan

Introduction

Règles

Exemples

Règle de la copie

Les règles de l'égalité

Tactiques de preuves

Conclusion

Introduction

- 1. Deux tactiques de preuves pour les règles $\forall I$ et $\exists E$:
 - 1.1 Raisonner en avant avec une hypothèse d'existence,
 - 1.2 Raisonner en arrière pour généraliser.
- 2. Application à un exemple.

Raisonner en avant avec une hypothèse d'existence

Soit Γ un ensemble de formules, x une variable, A et C des formules.

Supposons que l'on cherche une preuve de C dans l'environnement Γ , $\exists xA$.

Raisonner en avant avec une hypothèse d'existence

Soit Γ un ensemble de formules, x une variable, A et C des formules.

Supposons que l'on cherche une preuve de C dans l'environnement Γ , $\exists xA$.

Deux cas possibles:

- x n'est libre ni dans Γ, ni dans C.
- \triangleright x est libre dans Γ ou C.

1^{er} cas : x n'est libre ni dans Γ , ni dans C

Dans ce cas, la preuve peut toujours s'écrire :

```
Supposons A

preuve de C dans l'environnement \Gamma, A

Donc A \Rightarrow C \Rightarrow I 1,_{-}
C \exists E
```

$2^{\text{ème}}$ cas : x est libre dans Γ ou C

On choisit une variable $y \ll$ nouvelle \gg , c'est-à-dire non libre dans Γ , C et absente de A, puis on se ramène au cas précédent, via la règle de copie.

La preuve s'écrit alors :

$$\exists yA < x := y >$$
 copie de $\exists xA$
Supposons $A < x := y >$ preuve de C dans l'environnement $\Gamma, A < x := y >$ Donc $A < x := y > \Rightarrow C$ $\Rightarrow I 1,$ $\exists E$

Remarques

La recherche de la preuve initiale a été réduite à la recherche d'une preuve dans un environnement plus simple.

Mode de raisonnement appliqué en mathématiques quand on cherche une preuve d'une formule C avec l'hypothèse $\exists x P(x)$.

On introduit une constante « nouvelle » a vérifiant P(a) et on prouve C sous l'hypothèse P(a).

Raisonner en arrière pour généraliser

Supposons que l'on cherche une preuve de $\forall xA$ dans l'environnement Γ .

Raisonner en arrière pour généraliser

Supposons que l'on cherche une preuve de $\forall xA$ dans l'environnement Γ .

Deux cas possibles:

- \triangleright x n'est pas libre dans Γ .
- \triangleright x est libre dans Γ .

1^{er} cas : x n'est pas libre dans Γ

preuve de *A* dans l'environnement Γ

$2^{\text{ème}}$ cas : x est libre dans Γ

On choisit une variable y « nouvelle », c'est-à-dire non libre dans Γ , puis on se ramène au cas précédent, via la règle de copie.

La preuve s'écrit alors :

preuve de
$$A < x := y >$$
 dans l'environnement Γ

$$\forall yA < x := y > \forall I$$

$$\forall xA$$
 copie de la formule précédente

Remarque

La recherche de la preuve initiale a été réduite à la recherche d'une preuve d'une formule plus simple dans le même environnement.

Mode de raisonnement appliqué en mathématiques quand on cherche une preuve de $\forall x P(x)$.

On introduit une constante « nouvelle » a et on prouve P(a). Puis l'on ajoute : puisque le choix de a est arbitraire, on a $\forall x P(x)$.

Un exemple d'application des tactiques

Notation \ll il existe un et un seul $x \gg$ (en bref $\exists ! x$) par :

1
$$\exists ! x P(x) \doteq \exists x (P(x) \land \forall y (P(y) \Rightarrow x = y)).$$

Un exemple d'application des tactiques

Notation \ll il existe un et un seul $x \gg$ (en bref $\exists ! x$) par :

1
$$\exists ! x P(x) \doteq \exists x (P(x) \land \forall y (P(y) \Rightarrow x = y)).$$

En séparant l'existence de x et son unicité, on peut aussi la définir par :

$$2 \exists !xP(x) \doteq \exists xP(x) \land \forall x \forall y(P(x) \land P(y) \Rightarrow x = y).$$

Ces deux définitions sont bien sûr équivalentes et on montre ici formellement que **la première implique la deuxième**.

Un exemple d'application des tactiques

Notation \ll il existe un et un seul $x \gg$ (en bref $\exists ! x$) par :

1
$$\exists ! x P(x) \doteq \exists x (P(x) \land \forall y (P(y) \Rightarrow x = y)).$$

En séparant l'existence de x et son unicité, on peut aussi la définir par :

$$2 \exists !xP(x) \doteq \exists xP(x) \land \forall x \forall y(P(x) \land P(y) \Rightarrow x = y).$$

Ces deux définitions sont bien sûr équivalentes et on montre ici formellement que **la première implique la deuxième**.

Comme la preuve est longue, nous allons la décomposer.

6.2.3 Plan de la preuve

$$\exists x (P(x) \land \forall y (P(y) \Rightarrow x = y)) \Rightarrow \exists x P(x) \land \forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$$

On applique les deux tactiques suivantes :

- Pour prouver $A \Rightarrow B$, supposer A et déduire B
- Pour prouver $A \wedge B$, prouver A et prouver B.

6.2.3 Plan de la preuve

$$\exists x (P(x) \land \forall y (P(y) \Rightarrow x = y)) \Rightarrow \exists x P(x) \land \forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$$

On applique les deux tactiques suivantes :

- Pour prouver $A \Rightarrow B$, supposer A et déduire B
- Pour prouver $A \wedge B$, prouver A et prouver B.

```
1 Supposons \exists x(P(x) \land \forall y(P(y) \Rightarrow x = y))

preuve de \exists xP(x) dans l'environnement 1

preuve de \forall x \forall y(P(x) \land P(y) \Rightarrow x = y) dans l'environnement 1

\exists xP(x) \land \forall x \forall y(P(x) \land P(y) \Rightarrow x = y)

Donc \exists x(P(x) \land \forall y(P(y) \Rightarrow x = y)) \Rightarrow \exists xP(x) \land \forall x \forall y(P(x) \land P(y) \Rightarrow x = y)
```

 $\wedge I$

6.2.3 Application de la tactique utilisant une hypothèse d'existence

 $\exists x P(x)$ dans l'environnement de $\exists x (P(x) \land \forall y (P(y) \Rightarrow x = y))$

6.2.3 Application de la tactique utilisant une hypothèse d'existence

 $\exists x P(x)$ dans l'environnement de $\exists x (P(x) \land \forall y (P(y) \Rightarrow x = y))$

formula	
	∧ <i>E</i> 1 1
	$\exists 12, x$
	$\Rightarrow I$ 1,2
$\exists x P(x)$	∃ <i>E</i> i, 4
	formule $\exists x (P(x) \land \forall y (P(y) \Rightarrow x = y))$ Supposons $P(x) \land \forall y (P(y) \Rightarrow x = y)$ $P(x)$ $\exists x P(x)$ Donc $P(x) \land \forall y (P(y) \Rightarrow x = y) \Rightarrow \exists x P(x)$ $\exists x P(x)$

6.2.3 Application de la tactique pour obtenir une conclusion générale : Plan de preuve

$$\forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$$
 dans l'environnement $\exists x (P(x) \land \forall y (P(y) \Rightarrow x = y))$

On applique, les tactiques suivantes :

- 1. « raisonner en avant en utilisant d'une hypothèse existentielle ».
- 2. Pour prouver $A \Rightarrow B$, supposer A et déduire B
- 3. « raisonner en arrière pour obtenir une conclusion générale ».

6.2.3 Application de la tactique pour obtenir une conclusion générale : Preuve

référence	formule	
i	$\exists x (P(x) \land \forall y (P(y) \Rightarrow x = y))$	
1	Supposons $P(x) \land \forall y (P(y) \Rightarrow x = y)$	
2	Supposons $P(u) \wedge P(y)$	
3	$\forall y (P(y) \Rightarrow x = y)$	∧ <i>E</i> 2 1
4	P(u)	∧ <i>E</i> 1 2
5	$P(u) \Rightarrow x = u$	∀ <i>E</i> 3, <i>u</i>
6	x = u	$\Rightarrow E$ 4, 5
7	P(y)	∧ <i>E</i> 2 2
8	$P(y) \Rightarrow x = y$	∀ <i>E</i> 3, <i>y</i>
9	x = y	⇒ <i>E</i> 7, 8
10	$\underline{u} = y$	congruence 6
11	Donc $P(u) \land P(y) \Rightarrow u = y$	\Rightarrow 12, 10
12	$\forall y (P(u) \land P(y) \Rightarrow u = y)$	∀/ 11
13	$\forall u \forall y (P(u) \land P(y) \Rightarrow u = y)$	∀ <i>I</i> 12
14	$\forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$	copie de 13
15	Donc $(P(x) \land \forall y (P(y) \Rightarrow x = y)) \Rightarrow \forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$	⇒ <i>I</i> 1, 14
16	$\forall x \forall y (P(x) \land P(y) \Rightarrow x = y)$	∃ <i>E</i> i, 15

Conclusion

Comme on peut le voir sur l'exemple précédent, toute la difficulté des preuves est concentrée autour des règles $\forall I$ et $\exists E$:

- dans le raisonnement en avant, il faut trouver les bonnes instanciations des formules commençant par un quantificateur existentiel
- dans le raisonnement en arrière, il faut trouver la bonne instance permettant de déduire une formule commençant par un quantificateur universel

Plan

Introduction

Règles

Exemples

Règle de la copie

Les règles de l'égalité

Tactiques de preuves

Conclusion

Aujourd'hui

▶ DN premier ordre

Conclusion

Prochaine fois

► Cohérence du système

Conclusion

Merci de votre attention.

Questions?